
TRACK: MODERN INFRASTRUCTURE

NOVEMBER 12, 2020

Matteo Valentini, Nethesis

Immutable
deployments: the
new classic way
for service
deployment

Matteo Valentini_Amygos

Warning!
The events depicted in this talk are real. Any

similarity to any technology living or dead is not a
merely coincidental.

The illustrated approach is based on lessons
learned in more than two years of using the

methodology on a production service.

Matteo Valentini_Amygos

The Problems

Matteo Valentini_Amygos

SnowflakeServer

The Problems

Matteo Valentini_Amygos

SnowflakeServer

A server that is unique[1]:

● Manual installation
● Manual configuration
● Manual maintenance

[1]https://martinfowler.com/bliki/SnowflakeServer.html

The Problems

https://martinfowler.com/bliki/SnowflakeServer.html

Matteo Valentini_Amygos

It Is your server and
you take care of it,
as you do with your
pet.

Matteo Valentini_Amygos

Configuration Drift

The drift from a well know start state, even if automated configuration tool are
used[2]:

● Automated configuration tools manage a subset of a machine’s state
● Writing and maintaining manifests/recipes/scripts is time consuming

[2]http://kief.com/configuration-drift.html

The Problems

http://kief.com/configuration-drift.html

Matteo Valentini_Amygos

The path of least resistance of services
management

Every developer or operator will always follow the
simple, less costly and quick way to fix a

production problem.

And then he/she will forget about it.

Matteo Valentini_Amygos

Unknown Unknowns
“An unknown unknown means that there is
something you need to know, but there is no way
for you to find out what it is, or even whether
there is an issue.”

John Outsterhout, “A Philosophy of Software
Design”, p. 9

The Problems

Matteo Valentini_Amygos

Not Deterministic Deployment

The Problems

Matteo Valentini_Amygos

The Solution

Matteo Valentini_Amygos

Immutable Infrastructure

“If you absolutely know a system has been created via automation and never
changed since the moment of creation, most of the problems I describe above
disappear. Need to upgrade? No problem. Build a new, upgraded system and
throw the old one away. New app revision? Same thing. Build a server (or image)
with a new revision and throw away the old ones.”

Chad Fowler, “Trash Your Servers and Burn Your Code: Immutable
Infrastructure and Disposable Components”

http://chadfowler.com/2013/06/23/immutable-deployments.html

The solution

http://chadfowler.com/2013/06/23/immutable-deployments.html

Matteo Valentini_Amygos

Deterministic Deployment

The solution

Matteo Valentini_Amygos

Immutable Infrastructure
“Immutable infrastructure make configuration
changes by completely replacing the
servers.Changes are made by building new
server templates, and then rebuilding relevant
servers using those templates. This increase
predictability, as there little variance between
servers as tested, and servers in production. It
requires sophistication in server template
management.”

Kief Morris, “Infrastructure as Code: Managing
Servers in the Cloud”, p.70

The solution

Matteo Valentini_Amygos

What We Need?

● An automated provisioning/configuration tool
● An automated image generator tool
● An orchestrator
● A system to keep track of all the changes (we

can use git for that)

The solution

Matteo Valentini_Amygos

The tools

Matteo Valentini_Amygos

Automated Provisioning
Shell scripts

● Almost every developer can understand
it

● Simple and at the same time very
powerful

The tools

Matteo Valentini_Amygos

Image Builder
Packer

● JSON file configuration
● Multiple provisioners support:

○ Ansible
○ Puppet
○ Chef
○ Shell scripts
○ …

● Multiple Builder support:
○ DigitalOcean
○ AWS
○ Google Cloud
○ Azure
○ ….

The tools

Matteo Valentini_Amygos

Orchestrator
Terraform

● DSL (HCL)
● Declarative language configuration
● Enable IaC
● Multi cloud support

○ AWS
○ Google Cloud
○ Azure
○ DigitalOcean
○ ...

The tools

Matteo Valentini_Amygos

Cloud platform
DigitalOcean

● Not expensive
● Simple
● Have every thing the you need:

○ APIs
○ Compute instances
○ Snapshots
○ Cloud-init
○ Floating IPs
○ Load Balancers

The tools

Matteo Valentini_Amygos

Why?
● Container vs VMs: The vm are a more familiar concepts, not all want or need to

switch to container
● Configuration Management vs shell scripts: The learning steps can be too high, for

some simple tasks a shell script is enough for the work
● Complex orchestrator vs IaC: For most of the company a complex orchestrator (like

kubernetes) is too much
○ You end up with two problems:

■ Manage the service orchestration
■ Manage the orchestrator

● Full features cloud platform vs Simple cloud platform
○ Usually you use only a subset of functionality offered
○ The practitioners prefer simple and easy interface
○ The management are more inclined to approve the use of a cloud platform were costs are low and the

pricing is clear

The tools

Matteo Valentini_Amygos

Why?
“What tools or technologies you use is irrelevant
if the people who must use them hate use them,
or if they don’t archive the outcomes and enable
the behaviors we care about.”

Nicole Forsgren PhD, Jez Humble, Gene Kim,
“Accelerate: The Science of Lean Software and
DevOps: Building and Scaling High Performing
Technology Organizations”, p. 68

The tools

Matteo Valentini_Amygos

The Implementation

Matteo Valentini_Amygos

Application

The simple app example:

● Single Go binary
● Deployed on Github releases
● 1 attached database
● Follow the 12 Factor app principles:

○ Codebase: One codebase tracked in revision control, many deploys
○ Config: Store config in the environment
○ Processes: Execute the app as one or more stateless processes
○ Disposability: Maximize robustness with fast startup and graceful

shutdown

The Implementation

Matteo Valentini_Amygos

Git Repository Layout

.

├── packer.json
├── provisioning
│ └── files
│ └──
app.service

└── terraform
 ├── database.tf
 ├── domains.tf
 ├── droplet.tf
 ├── image.tf
 └── userdata.tfThe Implementation

Matteo Valentini_Amygos

Systemd Unit File
[Unit]

Description=App server

After=network.target cloud-init.service

[Service]

Type=simple

User=root

EnvironmentFile=-/opt/app/conf.env

WorkingDirectory=/opt/app

Environment=GIN_MODE=release

ExecStart=/opt/app/app

[Install]

WantedBy=multi-user.target

The Implementation

Matteo Valentini_Amygos

Packer Configuration
{ "variables": {

"url": "https://github.com/Amygos/immutable_deploys",

"version": "v1"

},

 "builders": [{

"type": "digitalocean",

"image": "centos-7-x64",

"region": "ams3",

"size": "s-1vcpu-1gb",

"ssh_username": "root",

"snapshot_name": "app-{{user `version`}}-{{isotime \"2006/01/02-15:04:05\"}}"

 }],

 "provisioners": [{

 "type": "file",

 "source": "provisioning/files/app.service",

 "destination": "/usr/lib/systemd/system/app.service"},

 {"type": "shell",

 "inline": [

 "mkdir -p /opt/app",

 "curl -L {{ user `url` }}/releases/download/{{user `version`}}/app > /opt/app/app",

 "chmod 0755 /opt/app/app",

 "systemctl daemon-reload",

 "systemctl enable app"]}]}

The Implementation

Matteo Valentini_Amygos

Packer Output
==> digitalocean: Creating temporary ssh key for droplet...

==> digitalocean: Creating droplet...

==> digitalocean: Waiting for droplet to become active...

==> digitalocean: Using ssh communicator to connect: 178.62.207.7

==> digitalocean: Waiting for SSH to become available...

==> digitalocean: Connected to SSH!

==> digitalocean: Uploading provisioning/files/app.service => /usr/lib/systemd/system/app.service

==> digitalocean: Provisioning with shell script: /tmp/packer-shell648441204

==> digitalocean: Gracefully shutting down droplet...

==> digitalocean: Creating snapshot: app-v1-2020/01/25-22:07:03

==> digitalocean: Waiting for snapshot to complete...

==> digitalocean: Destroying droplet...

==> digitalocean: Deleting temporary ssh key...

Build 'digitalocean' finished.

==> Builds finished. The artifacts of successful builds are:

--> digitalocean: A snapshot was created: 'app-v1-2020/01/25-22:07:03' (ID: 58285042) in regions 'ams3'

The Implementation

Matteo Valentini_Amygos

Droplet Configuration
resource "digitalocean_droplet" "app" {

 image = data.digitalocean_image.app.image

 name = "app"

 region = "ams3"

 size = "s-1vcpu-1gb"

 user_data = data.template_cloudinit_config.app.rendered

 lifecycle {

 create_before_destroy = true

 }

}

data "digitalocean_image" "app" {

 name = "app-v1-2020/01/25-22:07:03"

}

The Implementation

Matteo Valentini_Amygos

cloud-init User Data
data "template_cloudinit_config" "app" {

 gzip = false

 base64_encode = false

 part {

 content_type = "text/cloud-config"

 content = <<-EOT

 #cloud-config

 write_files:

 - path: /opt/app/conf.env

 content: |

 DB_HOST="${digitalocean_database_cluster.app.host}"

 DB_PORT="${digitalocean_database_cluster.app.port}"

 DB_USER="${digitalocean_database_cluster.app.user}"

 DB_PASSWORD="${digitalocean_database_cluster.app.password}"

 DB_NAME="${digitalocean_database_cluster.app.database}"

 EOT

 }

}

The Implementation

Matteo Valentini_Amygos

DNS records configuration
resource "digitalocean_domain" "app" {

 name = “example.com”

}

resource "digitalocean_record" "app" {

 domain = digitalocean_domain.app.name

 type = "A"

 name = "app"

 ttl = "60"

 value = digitalocean_floating_ip.app.ip_address

}

resource "digitalocean_floating_ip" "app" {

 droplet_id = digitalocean_droplet.app.id

 region = "ams3"

}

The Implementation

Matteo Valentini_Amygos

Database Configuration

resource "digitalocean_database_cluster" "app" {

 name = "app"

 engine = "pg"

 version = "11"

 size = "db-s-1vcpu-1gb"

 region = "ams3"

 node_count = 1

}

The Implementation

Matteo Valentini_Amygos

Immutable Infrastructure Workflow

● Deploy new app version
1. Build new image with packer
2. Add it in the terraform configuration
3. Apply the changes

● Modify the configuration
1. Change or add new configuration to the cloud-init template
2. apply the changes

The Implementation

Matteo Valentini_Amygos

Conclusions

Matteo Valentini_Amygos

Immutability trade-offs

Separate what is immutable from what is mutable, eg.;

Immutable resources

● Application code/binary
● graphical assets

Mutable resource

● Database
● HTTPS Certificates (yes, they are a mutable resource

Conclusions

Matteo Valentini_Amygos

The Benefits

Lowering the Deployment Pain

● Simple provisioning: you don't have to care about to previous state,
every time is from scratch

● Simple rollback: most of the time is a simple git revert or git restore

Horizontal scalability

● The server are not unique anymore so you can easily scale
● Reproducibility
● All is automatized and tracked, you can easily reproduce a deployment

and create a local environment

Conclusions

Matteo Valentini_Amygos

Further Steps

● Centralized Loging System
○ Graylog
○ ELK
○ Loki

● Centralized Monitoring System
○ Prometheus, Grafana

● Distribuite Tracing Tool
○ Jaeger

● Observability
○ Honeycomb
○ Tempo

Conclusions

Matteo Valentini_Amygos

But it is a recent idea?

Conclusions

Matteo Valentini_Amygos

Thanks for listening!
Questions?

Matteo Valentini

Developer at Nethesis

Amygos

_Amygos

matteo.valentini@nethesis.it

Matteo Valentini

https://github.com/Amygos/
https://twitter.com/_Amygos
mailto:matteo.valentini@nethesis.it
http://www.linkedin.com/in/matteo-valentini

